
Parameterized Vietoris-Rips Filtrations via Covers

Bradley J. Nelson

University of Chicago

Vietoris-Rips Seminar
February 18, 2022

1 / 51



Section 1

Introduction
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Cover Complexes

We’ll consider Vietoris-Rips Cover Complexes. Let U be a cover of
a data set X, and R(X; r) denote the Vietoris-Rips complex of X
at parameter r . We define

R(X,U ; r) =
⋃
U∈U

R(U; r)

Why consider this?

▶ Smaller than standard VR complex, more fine-grained
structure than Nerve

▶ Parallelization of persistent homology computation
[Yoon, 2018]

▶ Parameterization using U - like mapper [Singh et al., 2007]

Note: GUDHI has something called a CoverComplex which is more
related to the Nerve. This is different.
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Vietoris-Rips Filtrations

Let (X, d) be a dissimilarity space. We extend the dissimilarity to
tuples of points x0, . . . , xk ⊆ X as

d(x0, . . . , xk) = max
0≤i<j≤k

d(xi , xj)

The Vietoris-Rips complex of X at parameter r is the simplicial
complex

R(X; r) = {(x0, . . . , xk) | x0, . . . , xk ∈ X, d(x0, . . . , xk) ≤ r}.

The Vietoris-Rips filtration of X is the nested sequence of
complexes

R(X; 0) ⊆ · · · ⊆ R(X; r) ⊆ . . .
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Using Vietoris-Rips Filtrations

Pros:

▶ Easy to define, construct algorithmically

▶ Persistent homological features capture structure in the
sample X.

▶ Persistent homology is stable to perturbations of (X, d).

Cons:

▶ Size. Number of k-simplices on n points is
(n
k

)
≈ O(nk).
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Nerves and Covers

Another idea to get a topological signature of X: Produce a cover
U = {Ui}i∈I of X. Construct the Nerve

N (U) = {(U0, . . . ,Uk) | U0 ∩ Uk ̸= ∅}

Nerve Theorem
If X is paracompact and U is a good cover, then N (U) ≃ X.

A good cover means that
⋂

i∈J Ui is either empty or contractible
for all J ⊆ I.
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Using Nerves

Pros:

▶ Easy to define, construct algorithmically

▶ Typically much smaller than R
Cons:

▶ When X is a discrete sample, the only good cover has the
same discrete topology as X - no large scale geometric
structure.

▶ How to choose cover? Lose some geometric structure inside
sets.

▶ Not an immediately obvious way to filter - this would depend
on parameterizing construction of U
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Persistent Homology

Persistent homology can be used to compute topological features
of a filtration.

Hk(X (·)) = Hk(X (0)) → · · · → Hk(X (r)) → . . .

Is a persistence vector space, and is classified up to isomrorphism
by its barcode {(bi , di )} where each bi indicates the birth
parameter of a new homology class which maps through inclusions
until entering a kernel at parameter di .
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Interleavings

An interleaving relates two persistence vector spaces. Let
α, β : R → R be non-decreasing maps.
An (α, β)-interleaving between Hk(X (·)) and Hk(Y(·)) consists of
two shift maps

Fα : Hk(X (r)) → Hk(Y(α(r))

Gβ : Hk(Y(r)) → Hk(X (β(r))

so that the following diagram commutes

Hk(X (r)) Hk(X (β(r))) Hk(X (β ◦ α(r)))

Hk(Y(r)) Hk(Y(α(r))) Hk(Y(α ◦ β(r)))
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Nerve Theorems and Persistence

If a filtration of Nerves always satisfies the good cover property,
then there is a natural extension of the Nerve theorem
[Chazal and Oudot, 2008]

Results on extending the Nerve theorem to interleavings:
[Govc and Skraba, 2018, Cavanna and Sheehy, 2018] Relaxation of
good cover to having ϵ-acyclic intersections.
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Parameterization

In classical topology, can study spaces parameterized by base space
B.

X Y

B

f

p

q

In setting of discrete samples, makes sense to work with covers of
B and pullbacks.

The mapper construction [Singh et al., 2007] is an example of this.

[Yoon, 2018] studies R(X,U ; r) where U is the pullback of a cover
of R.
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Contributions

This talk:

▶ Interleaving relationship between R(X; r) and R(X,U ; r).
▶ To do this, we develop an extension of the method of acyclic

carriers to interleavings.

Other applications of these techniques:

▶ Stability of R(X,U ; r)
▶ Approximate nerve theorem for cover complexes

▶ Alternative approach geometric stability results e.g.
[Chazal et al., 2014]

References: [Nelson, 2020], [Nelson, 2022] in preparation.
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Section 2

Examples
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Pullback Covers

In a variety of situations is can be interesting to use a map
f : X → Y to investigate data. This helps with dimensionality
reduction, and can also help incorporate known structure.

This is very similar to the approach of the mapper construction
[Singh et al., 2007], which is the nerve of a refinement of a
pullback cover.
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Torus 1

Flat torus in 4 dimensions, 500 samples on a coil.
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Figure: Cover pulled back from projection onto first coordinate
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Torus 2

Flat torus in 4 dimensions, 500 samples on a coil.
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Figure: Cover pulled back from projection onto first two coordinates
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Torus 3

Flat torus in 4 dimensions, 500 samples on a coil.
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Figure: Cover based on 20-nearest neighbors of each point
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Torus 4

Flat torus in 4 dimensions, 500 samples on a coil.
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Figure: Cover based on nested landmarking procedure
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Section 3

A Filtered Acyclic Carrier Theorem
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Acyclic Carrier Theorem

If a carrier C : C∗ → D∗ is acyclic, and L∗ ⊂ C∗ is a sub-chain
complex of C∗, then any chain map F̂∗ : L∗ → D∗ can be extended
to a chain map F∗ : C∗ → D∗. Furthermore, this extension is
unique up to chain homotopy.

We’ll talk about what a carrier is, but the take-away is that there
is a way to construct maps between chain complexes from some
initial data.

Classical introductions/proofs: [Eilenberg and Steenrod, 1952,
Mosher and Tangora, 1968, Munkres, 1984]

20 / 51



Filtered Objects

Filtered Objects

A filtered object in a category over a poset T is a collection of
objects XT = {X t}t∈T where X t1 ⊆ X t2 if t1 ≤ t2.

Shift Maps

Let X S ,YT be filtered objects in a category over posets S ,T
respectively. Let α : S → T be a non-decreasing map. An α-shift
map f α : X S → YT is a collection of maps f s : X s → Yα(s) for
each s ∈ S so that the following diagram commutes.

X s X s′

Yα(s) Yα(s′)

f s f s
′ (1)
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Filtered Carriers

Filtered Carriers
A filtered carrier of chain complexes over a poset T , denoted
CT : CS

∗ → DT
∗ is an assignment of basis vectors of CS

∗ to filtered
sub-complexes of DT

∗ . In situations where T is understood, we will
drop the superscript, and simply write C : CS

∗ → DT
∗ .

We can also define a filtered carrier of cell complexes
CT : X S → YT by assigning cells of X S to sub-cell complexes of
YT .

To get the classical version of carriers, just take the trivial posets
S = T = {0}.
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Carrying a Map

Let CT : CS
∗ → DT

∗ be a filtered carrier, and Fα
∗ be an α-shift

chain map. We say that Fα
∗ : CS

∗ → DT
∗ is carried by CT if

Fα(x) ∈ CT (x) at parameter α(s) for all basis elements x ∈ C s
∗ .
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Acyclic Carriers

Acyclic

A chain complex C∗ is acyclic if H̃∗(C∗) = 0
(ker ∂k = img ∂k+1, or all cycles are boundaries).

β-Acyclic

Let β : T → T be a nondecreasing map. CT
∗ is β-acyclic if every

cycle in C t
∗ has a boundary in C

α(t)
∗ .

If CT
∗ is β-acyclic, then its reduced persistent homology has no

bars that survive a shift by β.
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Acyclic Carriers

(α, β)-Acyclic Carrier

Let CS
∗ ,D

T
∗ be filtered chain complexes, CT : CS

∗ → DT
∗ be a

filtered carrier, and α : S → T , β : T → T be non-decreasing
maps. We say CT is (α, β)-acyclic if CT (x) is β-acyclic after
t = α(s) for all x ∈ C s

∗ and for all s ∈ S . In the case where β = id,
then we just say CT is α-acyclic.

(After initial shift by α, the carrier is β-acyclic).
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Filtered Acyclic Carrier Theorem

Theorem
Let CT : CS

∗ → DT
∗ be an (α, β)-acyclic carrier of filtered chain

complexes, with S a strict total order with an initial object 0 ∈ S .
Let LS∗ ⊆ CS

∗ be a filtered sub-complex generated by a filtered
sub-basis of CS

∗ , and F̃α : LS∗ → DT
∗ be an α-filtered chain map

carried by CT . Then F̃α extends to a filtered chain map
F βk◦α : CS

∗ → DT
∗ , where k is the maximal dimension of the chain

map, and the extension is unique up to β-chain homotopy.
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Proof Sketch I

We use induction on the dimension k of the map, and on the total
order on S .

Base case: s = 0, k = 0

First, we start with F̃
0,α(0)
0 : L00 → D

α(0)
0 . From the acyclic carrier

theorem, we can extend to a chain map F
0,α(0)
0 → C 0

0 → D
α(0)
0 .
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Proof Sketch II

s > 0, k = 0

Now, let s > 0. Assume that we have extended Fα
0 for all r < s so

that if r ′ < r ,
F
r ,α(r)
0 |C r′

∗
= F

r ′,α(r ′)
0 (2)

Let L′S0 = LS0 ∪
⋃

r<s C
r
0 , and F̃α

0 denote the extended map up to
all r < s. We can now apply the acyclic carrier theorem again to
extend to F s,α(s) to C s

0 .

Because S is a strict total order, eq. (2) continues to be satisfied
because the function is extended on each basis element exactly
once. By induction, we can extend to a map of 0-chains
Fα : CS

0 → DT
0 .
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Proof Sketch III

Start a β-chain homotopy.

Because the extension is not necessarily unique, suppose that Fα
0

and Gα
0 are both extensions of F̃α

0 carried by C.

∂0(F
α
0 − Gα

0 ) = 0, so can be expressed as the boundary of

Kβ◦α
0 : CS

0 → DT
1 after shifting by an additional factor of β (since

the image of the carrier is β-acyclic). This gives a β homotopy of
0-chain maps.
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Proof Sketch IV

Extension to higher dimensions, s = 0

Suppose we have extended the map to dimension k :

Fk : C 0
k → D

βk◦α(0)
k .

Let x ∈ Ck+1 be a basis element that we must extend at filtration
parameter s = 0.

We need ∂k+1Fk+1x = Fk∂k+1x . The image of the boundary

Fk∂k+1x lies in D
βk◦α(0)
k , but since C is (α, β)-acyclic, the cycle

need not have a boundary until we increase the filtration parameter
T by another factor of β.

We can then choose some boundary y to be Fk+1(x).
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Proof Sketch V

Extension to higher dimensions, s > 0

Assume that so far we have satisfied for r ′ < r < s

F
r ,βk+1◦α(r)
k+1 |C r′

k
= F

r ′,βk+1◦α(r ′)
k+1 (3)

and we have shifted the chain maps in lower dimensions via
F βk+1◦α = ιβF βk◦α.

Let x ∈ Ck+1 via a basis element that we must extend at filtration

parameter s. The image of the boundary Fk∂k+1x lies in D
βk◦α(s)
k ,

and we have already shifted the grade to βk+1 ◦ α(s) at which
point the cycle is a boundary of some y ∈ D

βk+1◦α(s)
k+1 in C(x).

We can choose this y to be Fk+1(x).
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Proof Sketch VI

Extension of β-chain homotopy

Following a similar inductive argument, we can extend a β

homotopy of extended chain maps F βk◦α
k , Gβk◦α

k to a β homotopy

of F βk+1◦α
k+1 and Gβk+1◦α

k , incurring an additional shift of β in each
dimension.
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Comments

To compute induced maps on homology in dimension k , it is only
necessary to extend to dimension k + 1. Do not need to incur
additional shifts by β for higher dimensions.

In a variety of cases, β = id, or βk = id for k ≥ k0. This can
happen if the carrier of chain complexes is obtained from filtered
cell complex that becomes contractible.

If S is not a strict total ordering, then additional restrictions on the
extension are needed.
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Augmentation-Preserving Maps

We say a carrier C : C∗ → D∗ is propoer with respect to a basis of
D∗ if C(x) is generated by a sub-basis of D∗ for each x in the basis
of C∗.

Proposition

Let C : CS
∗ → DT

∗ be an (α, β)-acyclic carrier that is proper with
respect to a T -filtered basis BD

∗ of D∗. Then there exists a chain
map Fα

0 : CS
0 → DT

0 carried by C which preserves the canonical
augmentation ϵ : x 7→ 1 for basis elements x ∈ CS

0 .

Proposition

Suppose Fα
∗ ,G

α
∗ : CS

∗ → DT
∗ are augmentation-preserving chain

maps carried by an (α, β)-acyclic carrier C. Then F∗ and G∗ are
β-chain-homotopic.
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Filtered Acylic Carriers to Interleavings

Proposition

Let X S and YT be filtered cell complexes, and suppose that
C : X S → YT is an α-acyclic carrier, D : YT → X S is a β-acyclic
carrier, A ⊇ D ◦ C is a (β ◦ α)-acyclic carrier that carries the
inclusion map on YT , and B ⊇ C ◦D is (α ◦ β)-acyclic and carries
the inclusion map on X S . Then Hq(X S) and Hq(YT ) are
(α, β)-interleaved for any q = 0, 1, . . . .

Sketch: Construct augementation-preserving chain maps, and note
that they are homotopic to inclusions, which are also
augmentation-preserving.
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Section 4

Vietoris-Rips Cover Complexes
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Interleaving

We wish to compare to compare R(X; r) and R(X,U ; r). Because
R(X,U ; r) ⊆ R(X; r), we just need to worry about when we can
construct a map f α below

R(X,U ; r) R(X,U ;α(r))

R(X; r) R(X;α(r))

f α

Passing to homology, this will give an (id, α)-interleaving.
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Carrier

We will focus on a carrier C : R(X; r) → R(X,U ; r) generated
from witness sets

X(x0, . . . , xk) = {y ∈ X | d(y , xi ) ≤ d(x0, . . . , xk) ∀i = 0, . . . , k}

and their union, denoted

X̄(x0, . . . , xk) =
⋃

S∈P({x0,...,xk})

X(S)

We define the carrier C : R(X; r) → R(X,U ; r) via

C : (x0, . . . , xk) 7→ ⟨X̄(x0, . . . , xk)⟩
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Restriction of Cover

We also want to consider the restriction of the cover to
X̄(x0, . . . , xk)

Ū(x0, . . . , xk) = {V∩X̄(x0, . . . , xk) | V ∈ Ū , X̄(x0, . . . , xk)∩V ̸= ∅}

39 / 51



Regimes

We can show three regimes for α, determined by parameters
0 ≤ R1 ≤ R2 ≤ R3.

1. For r ≤ R1, α = id.

2. For r ≤ R2, α ≤ r 7→ 2r .

3. For r ≤ R3, α ≤ r 7→ 3r .

These regimes are determined by properties of the cover U .
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Regime 1

Proposition

Let R1 be the largest value so that if d(x0, . . . , xk) ≤ R1 then there
exists some U ∈ U so that x0, . . . , xk ∈ U. Then for r ≤ R1,

R(X,U ; r) = R(X; r) (they are (id, id)-interleaved).

Proof: This follows from the definition of R(X,U ; r).
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Regime 2

Proposition

Let R2 be the largest value so that if d(x0, . . . , xk) ≤ R2 then
X(x0, . . . , xk) ∩ V ) is non-empty for each V ∈ Ū(x0, . . . , xk), and
Ū(x0, . . . , xk) is acyclic.

Then for r ≤ R2, Hk(R(X,U ; r)) and Hk(R(X; r)) are
(id, α)-interleaved where α : r → 3r .

Proof: In each V ∈ Ū(x0 . . . , xk), this condition means that there
is some y ∈ V where d(y , xi ) ≤ r for all i = 0, . . . , k . Any other
y ′ ∈ V has d(y ′, xi ) ≤ r for some i ∈ {0, . . . , k}, so R(V ; 2r)
forms a cone with y by triangle inequality, and is constrctible. The
carrier is then acyclic by the Nerve theorem.
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Regime 3

Proposition

Let R3 be the largest value so that if d(x0, . . . , xk) ≤ R3 then
N (Ū(x0, . . . , xk)) is acyclic. Then for r ≤ R3, Hk(R(X,U ; r)) and

Hk(R(X; r)) are (id, α)-interleaved where α : r → 3r .

Proof: Now, we may not be able to cone with some y ∈ V at
parameter 2r , but R(V ; 3r) forms a clique (thus contractible)
through the fact that for any y , y ′ ∈ V , d(y , xi ), d(y

′, xj) ≤ r for
some i , j ∈ {0, . . . , k} and triangle inequality:

d(y , y ′) ≤ d(y , xi ) + d(xi , xj) + d(xj , y
′) = r + r + r = 3r

The carrier is thus acyclic by the Nerve theorem.
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Outside Regime 3

At some parameter R⋆, R(U; r) becomes acyclic for every set
U ∈ U and all r > R⋆. This means H∗(R(X,U ; r)) = H∗(N (U))
for any r > R⋆.

Unless H̃∗(N (U)) = 0 = H̃∗(R(X; r)), there is no interleaving
beyond this point.
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How to Choose a Cover?

In general, we may wish to choose a cover that increases R1,R2,
and R3 as much as possible, while not adding too many points to
each set in U .
1. To maximize R1, want to include all r -nearest neighbors in

some set

2. To maximize R2, want to ensure that there are witnesses to
simplices. May require sets covering large distances in sparse
regions.

3. To maximize R3, want to make N (Ū(x0, . . . , xk)) acyclic.
Want sufficient overlap of sets in cover.
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Landmarking Procedure

A heuristic way to produce a cover with the desired properties:

1. Obtain a nested sequence of landmarks with
X = Xn ⊃ · · · ⊃ X1 ⊃ X0. Take n = i0 > i1 > . . .

2. Create covers of Xij , Uin , where each Uℓ ∈ Uij consists of
points in Xij which have xℓ ∈ Xin+1 in their k-closest
landmarks.

3. Take U =
⋃

i0,i1,...
Uij

R(X,U ; r) obtained in this way is similar to a sparse filtration
[Sheehy, 2013]. The main difference is that the longer edges are
not re-weighted to tighten interleaving.
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Landmark Cover
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Figure: n = 4000, ij = n/(2j), j = 0, 1, . . . . 191152 simplices in
2-skeleton. ≈ 0.5 seconds to compute in BATS.
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Conclusion

Extension of acyclic carrier theorem to interleavings:

▶ Procedural way to obtain shift maps from correspondences

▶ Can be applied to a variety of situations (including
non-simplicial)

Interleaving of R(X; r) and R(X,U ; r)
▶ Quality of interleaving depends on cover/data

▶ Motivates r-NN, k-NN based landmarking procedures

What next?

▶ Use of covers can be quite general, application specific

▶ Algorithmic use of carriers

▶ Parallelization of PH for cover complexes
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