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What is an Image Patch?

Image from van Hateren Natural Images Database [3]

I A d× d pixel block of a natural image

I This talk: black & white images

– Pixel values measure light intensity

I We’re interested in “high contrast” image patches
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Why Study Image Patches?

Natural images are complex. Patches are (relatively) simple.

A sparse, rough and incomplete picture:

I Image Compression, Harmonic Analysis

– Ridgelets, Curvelets, etc. [1]

I Image denoising/interpolation [2]

I Vision - understand the visual cortex [3, 4]
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Image Patches in TDA

Circles and Klein Bottles

I Carlsson & de Silva (2004) use as an example in witness complex
construction. [5]

– 3 circle model for a dense region of 3× 3 patches

I Carlsson et al. (2008) formulate Klein bottle model. [6]

– Showed that a dense region of 3× 3 patches lies near a Klein bottle

I Adams & Carlsson (2009) - range images primary circle [7]

Applications:

I Compression scheme by Maleki, Shahram, Carlsson (2008):
BiWedgelets / Kleinlets [8]

I Perea & Carlsson (2014) - rotation-invariant pattern recognition
using Klein bottle [9]
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Our Contributions

We introduce a general Klein bottle model for image patches

I Generalizes model used in Carlsson et al (2008)

I Works for general patch sizes

I Parametric model for the image patch Klein bottle

I We consider the problem of finding a ‘least squares fit’ Klein bottle
for high contrast image patches
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Whence the Klein Bottle?

???

Klein Bottle artist: Ron Estrin
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Our Viewpoint

I Image patches are functions (intensity) on a d× d grid

I Image patches are a discretization of a continuous phenomenon

f(x) f(xi)
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Obtaining Patches

1. Randomly select 5000 patches from
image

2. Take log intensities of patches

3. mean-center patches

4. take top 20% by contrast norm

5. normalize by contrast norm

Procedure from Lee, Pedersen, Mumford (2003) [4] applied to van
Hateren dataset [3]
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Edges

Our model for “high-contrast” image patches is based on the observation
that patches that look like edges are common.

Example image patches from the van Hateren data set [3]
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Sources of Variation

Two sources of variation in edges:

I Orientation of edges (primary circle)

I Type of edge (secondary circles)

Example image patches from the van Hateren data set [3]
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Odd Functions

Odd functions capture the behavior of transitions from one intensity to
another
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Even Functions

Even functions capture the behavior of lines
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Combined Functions

Edges can also be a combination of even and odd functions

+ =
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Klein Bottle Elements

We’ll show how to construct Klein bottles given the following ingredients:

I A symmetric domain X

I A space of functions F(X) mapping X to R
I A metric on F(X)

I Circles of even and odd functions in F(X)

I A “phase” stitching together the circles
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Symmetric Domain

We say a space X is symmetric if for all x ∈ X, −x ∈ X.

We’ll generally think of compact subsets of Rn.

Examples:
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Space of Functions

Ingredient 2: A space of functions F(X) mapping X to R:
Examples:

I L2 functions on X

I Continuous bounded functions on X

I degree ` polynomials on X
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A metric

F(X) may come equipped with a metric, but sometimes we may be able
to choose one.

In general we will consider the L2 metric. For continuous X:

d(f, g) =

(∫
X

(f(x)− g(x))2
)1/2

For discrete X:

d(f, g) =

(∑
X

(f(x)− g(x))2
)1/2
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Even and Odd

Let f ∈ F(X).

We say f is odd if f(−x) = −f(x) for all x ∈ X.

We say f is even if f(−x) = f(x) for all x ∈ X.

A General Klein Bottle Model 21



Circle of Odd Functions

Let Fo ⊂ F(X) be a set of odd functions homeomorphic to S1. We can
think of Fo as being parameterized by φ ∈ [0, 2π], and denote fo ∈ Fo as
fo(x;φ). Additionally, we require that fo(x;φ) = −fo(x;φ+ π).

(This is the “Primary Circle” [5])

A General Klein Bottle Model 22



Circle of Even Functions

Let Fe ⊂ F(X) be a set of even functions homeomorphic to S1. We can
think of Fe as being parameterized by φ ∈ [0, 2π], and denote fe ∈ Fo as
fe(x;φ). Additionally, we require fe(x;φ1) 6= −fe(x;φ2), φ1, φ2 ∈ [0, 2π]

Note that one rotation in this circle is half a rotation in angle.
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Mixing Even and Odd

We introduce a “phase” θ to combine even and odd functions. Let
Fk ⊂ F(X) be defined as

Fk = {cos(θ)fe(x; 2φ) + sin(θ)fo(x;φ) | θ ∈ [0, 2π], φ ∈ [0, π]}

We will denote an element of Fk as fk(x; θ, φ).

(These are “Secondary Circles” [5])
A General Klein Bottle Model 24



Identification

Fk is a Klein bottle, as seen through an identification on the torus.
Recall: fo(x;φ) = −fo(x;φ+ π)

θ

0

2π

φ π0
fk(x; 2π − θ, φ+ π)

= cos(−θ)fe(x; 2φ+ 2π) + sin(−θ)fo(x;φ+ π)

= cos(θ)fe(x; 2φ+ 2π)− sin(θ)fo(x;φ+ π)

= cos(θ)fe(x; 2φ) + sin(θ)fo(x;φ)

= fk(x; θ, φ)

Red: fk(x; θ = 0, φ) = fk(x; θ = 2π, φ) (full phase)
Blue: fk(x; θ, φ = 0) = fk(x; 2π − θ, φ = π) (even/odd, sin/cos)

Additional identifications do not occur due to the condition
fe(x;φ1) 6= −fe(x;φ2), for any φ1, φ2 ∈ [0, 2π].
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Klein Bottle Identification

Green: primary circle, Blue: secondary circles
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Comments

I We’ve made few assumptions about X

– For patches, no assumptions about size of pixel grid 2

– Can consider more general domains

I We’ve said little about Fe and Fo
– Don’t need to look anything like edges
– Also, many possible candidates for edge-like functions

2We need to be able to satisfy conditions on Fe and Fo, which rules out 2× 2
grids and smaller if normalizing patches
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Linear Combinations

We can construct circles Fe and Fo explicitly using linear combinations
of several even and odd functions.
For example, let fo1, fo2 be odd functions and fe1, fe2, fe3, fe4 be even
functions.

Fo = {sin(φ)fo1 + cos(φ)fo2 | φ ∈ [0, 2π]}

satisfies fo(x;φ+ π) = −fo(x;φ).

Fe =
{

sin(φ)fe3 + cos(φ)fe1 0 ≤ φ < π/2

sin(φ)fe3 − cos(φ)fe2 π/2 ≤ φ < π

− sin(φ)fe4 − cos(φ)fe2 π ≤ φ < 3π/2

− sin(φ)fe4 + cos(φ)fe1 3π/2 ≤ φ < 2π

φ ∈ [0, 2π]

}

satisfies fe(x;φ1) 6= −fe(x;φ2), for all φ1, φ2 ∈ [0, 2π]
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A DCT Klein Bottle

We use the lowest contrast modes of the discrete cosine transform as our
even and odd functions.

fo2

fo1 fe2 fe1

fe3

fe4

Examples 30



A DCT Klein Bottle

Klein bottle generated using DCT basis functions on 4× 4 patches.
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Polynomial Patches

We can also turn a 1-dimensional function into a 2-dimensional function
via projection before evaluation.

fo(x)

vφ

fo(x;φ) = fo(x
Tvφ) fo(xi;φ)

vφ =

[
cos(φ)
sin(φ)

]
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Original Klein Bottle Model

The original image patch Klein bottle of Carlsson et al. [6]

fo(x) = x fe(x) = x2
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Original Klein Bottle

The original image patch Klein bottle of Carlsson et al.

fo(x) = x fe(x) = x2
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Least Squares Formulation

Consider a family of Klein bottle models parameterized by γ, with Klein
bottle Kγ , and projection operation

Pγy = arg inf
fk∈Kγ

‖y − fk‖

We would like to find the parameter γ that solves

minimize
γ

∑
i

‖yi − Pγyi‖2

For a collection of patches {yi}.

We will consider the case where Fe and Fo are determined by low degree
polynomials (γ = (α, β)):

fo(x, φ) =
(∑̀
j=0

αj(x
Tvφ)

2j+1
)

fe(x, φ) =
(∑̀
j=1

βj(x
Tvφ)

2j
)
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Decomposing a Patch

To determine the best choice of Fo(α) and Fe(β) for the Klein bottle,
we want to determine the orientation φ and phase θ independently. For
each patch yi ∈ {yi}

I φi is estimated using the Harris Edge detector [10]. This gives us
the coordinates (xij)

Tviφ to use for function evaluation

I We decompose the patch into odd and even parts

yie(x) =
(
yi(x) + yi(−x)

)
/2

yio(x) =
(
yi(x)− yi(−x)

)
/2

I θi is estimated using the norms of yie and yio
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Least Squares System

We can set up a linear least squares equation for the odd term
coefficients α,

Xα = y

where α is the coefficient vector, and X and y have vertical blocks of the
form

Xi = sin(θi)

 (xi1)
Tviφ ((xi1)

Tviφ)
3 . . . ((xi1)

Tviφ)
2`+1

...
...

...
(xid2)

Tviφ ((xid2)
Tviφ)

3 . . . ((xid2)
Tviφ)

2`+1



yi =

 y
i
o,1
...

yio,d2


A similar system can be derived for the even coefficients β.
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Empirical Results

Example images from the Van Hateren dataset [3]

We use distance to a patch’s kth nearest neighbor as a proxy for density.
We’ll look at the top p percent “densest” points for different values of p.
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Empirical Results

Van Hateren Data set. Numbers reported are the relative 2-norm
approximation error.
k = 50, p = 0.2, ` = 9

d PCA2 PCA3 PCA4 KB(DCT) KB(old) KB(LS)

3 0.2446 0.1897 0.1328 0.2630 0.1268 0.1172
4 0.3434 0.2792 0.2132 0.3718 0.2240 0.1997
5 0.4402 0.3558 0.2730 0.4690 0.3014 0.2700
6 0.5185 0.4215 0.3290 0.5630 0.3940 0.3524
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Empirical Results

Least Squares Polynomials for k = 50, p = 0.2, ` = 9.
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Empirical Results

k = 50, p = 0.2, d = 5. Witness Complex (70 landmarks) computed on
data augmented with least squares Klein bottle (100× 100 sample on
(θ, φ) grid).

Left: persistence diagram computed over Z2, right, persistence diagram
computed over Z3. Computations performed with Gudhi.
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Empirical Results

Van Hateren Data set. Numbers reported are the relative 2-norm
approximation error.
k = 50, p = 0.5, ` = 9

d PCA2 PCA3 PCA4 KB(DCT) KB(old) KB(LS)

3 0.3128 0.2550 0.1924 0.3159 0.1976 0.1895
4 0.4452 0.3646 0.2927 0.4419 0.3170 0.2944
5 0.5250 0.4368 0.3613 0.5409 0.4285 0.3895
6 0.5875 0.4993 0.4223 0.6370 0.5378 0.4877
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Empirical Results

Van Hateren Data set. Numbers reported are the relative 2-norm
approximation error.
k = 50, p = 1.0, ` = 9 (all high-contrast patches)

d PCA2 PCA3 PCA4 KB(DCT) KB(old) KB(LS)

3 0.4625 0.3706 0.2842 0.4175 0.3415 0.3331
4 0.5486 0.4674 0.3838 0.5406 0.4838 0.4610
5 0.6045 0.5278 0.4497 0.6372 0.5964 0.5636
6 0.6472 0.5738 0.5009 0.7240 0.6952 0.6577
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Discussion

I The least squares Klein bottle model does well on the high density
portions of the patch data

I As dimension increases, performance suffers as edges are not the
only thing that appears

I The least squares Klein bottle does better than 2-D PCA
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Conclusion

We’ve shown

I There are many ways to come up with Klein bottles of functions on
symmetric spaces

I Edge models for image patches are a natural way to arrive at the
Klein bottle

– This doesn’t depend on patch size

I Klein bottle models empirically work well for high contrast patch
compression

Conclusion 47



Ongoing/Future Work

I Different (better?) bases for even and odd functions

I Bases for individual images/textures

– Functions learned for textures may be interesting

I Improvements in optimization process/understanding

– Currently, obtaining φ is somewhat heuristic
– Statistical guarantees?
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Questions?

(Some starters)

I Where else might elements of these Klein bottle models appear?

I What image patch features aren’t captured by the edge model?

I Are there reasonable models that can be built on top of the Klein
bottle?
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